Permutation test and t test

Simulation study to compare t.test and wilcox.test
Variables:
nNB = Number of No blink;
nBR = Number of Blink removed;
Restriction: n > nNB > nBR;
To performed the t test whether the mean locations of NB and BR are same,
the restriction is only that the number of the sample size for BR, nBR is
greater than 20 since always the sample size for NB, nNB is greater than
nBR (nNB > nBR). If nBR is less than 20, we need to perform the nonparametric
test, which is called Mann-Whitney U test, also known as wilcox rank test.

nSim <- 1000 ; mypvalue <- 0.05 ; nNB <- 200 ;
nBR <- 20; # nNB > nBR
Out <- NULL ;
for(j in 2:20){
 ct <- 0 ;
 for(i in 1:nSim){
 NB <- rnorm(nNB); BR <- rnorm(j);
 ttest <- t.test(BR, NB, paired=F);
 wtest <- wilcox.test(BR, NB, paired=F, conf.int=T);
 ct <- ct+ifelse((ttest$p.value < mypvalue)!=(wtest$p.value < mypvalue), 1, 0);
 }
 Out <- rbind(Out , c(j, ct/nSim)) ;
}
Out

[1] 0.050 200 2 0.093
[1] 0.050 200 3 0.068
[1] 0.050 200 4 0.051
[1] 0.050 200 5 0.042
[1] 0.050 200 6 0.040
[1] 0.050 200 7 0.031
[1] 0.050 200 8 0.023
[1] 0.050 200 9 0.028
[1] 0.050 200 10 0.023
[1] 0.050 200 11 0.030
[1] 0.050 200 12 0.022
[1] 0.050 200 13 0.018
[1] 0.050 200 14 0.021
[1] 0.050 200 15 0.032
One example of ttest and permutation test
NB <- rnorm(nNB) ; BR <- rnorm(nBR) ;
summary(NB) ; summary(BR) ;
ttest <- t.test(BR, NB, paired=F) ;
wtest <- wilcox.test(BR, NB, paired=F, conf.int=T) ;
ttest ; wtest ;

Welch Two Sample t-test

data: BR and NB
t = -0.8663, df = 21.63, p-value = 0.3959
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.8142807 0.3347911
sample estimates:
mean of x mean of y
-0.25965859 -0.01991379

Wilcoxon rank sum test with continuity correction

data: BR and NB
W = 1732, p-value = 0.3243
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
 -0.8405639 0.2438865
sample estimates:
difference in location
-0.2620736

One graphical comparisions
denNB <- density(NB) ; denBR <- density(BR) ;
par(mfrow=c(1,2))
boxplot(NB, BR, names=c("NB", "BR"), add=F, col=2:3) ;
plot(denNB, main="NB(red) and BR(green) ", ylim=c(0, max(denBR$y, denNB$y)),
 col=2, xlab="") ;
lines(denBR, col=3)